
# STAT 135 - Lab 2

GSI: Yutong Wang Jan 31, 2020



# Check in

#### Any questions for HW1 or class?



# **To-do Today**

- SD of combined list
- Method of Moments (MoM)
- Proof a lemma of SD
- R Practice: Bootstrap a CI



#### 1A. SD of combined list

A population consists of n men and n women. The heights of the men have an average of  $\mu_m$  and an SD of  $\sigma_m$ . The heights of the women have an average of  $\mu_w$  and an SD of  $\sigma_w$ . Find a formula for the SD of the heights of all 2n people, in terms of  $\mu_m$ ,  $\mu_w$ ,  $\sigma_m$  and  $\sigma_w$ .



#### 1B. SD of combined list

Two populations are surveyed with simple random samples. A sample of size  $n_1$  is used for population I, which has a population standard deviation  $\sigma_1$ ; a sample of size  $n_2 = 2n_1$  is used for population II, which has a population standard deviation  $\sigma_2 = 2\sigma_1$ . Ignoring finite population corrections, in which of the two samples would you expect the estimate of the population mean to be more accurate?



## 2. Method of Moments (MoM)

Consider the i.i.d. random variables  $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$  with both  $\mu$  and  $\sigma^2$  unknown. Find  $\hat{\mu}_{MM}$  and  $\hat{\sigma}_{MM}^2$ , i.e., the MoM estimators of the mean and the variance.



### 3. Lemma for SD

Let  $x_1, x_2, \ldots, x_n$  be a list of numbers with mean  $\mu$  and SD  $\sigma$ . Show that

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \mu^2. \tag{1}$$



## 4. R Practice

Goal: nonparametric bootstrapping a 95% Cl Instructions:

Go to bCourses (STAT 135)

- ---> Pages
- ---> Labs
- ---> lab2.Rmd



# Nonparametric Bootstrap

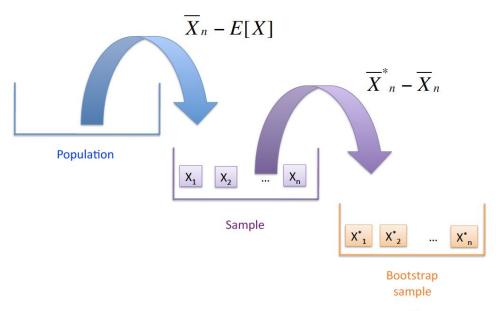



Figure 1: Bootstrapping the mean. The distribution of  $\bar{X}_n - E[X]$  is approximated by the distribution of  $\bar{X}_n^* - \bar{X}_n$ .

Lecture slide in STAT C245C, Fall 2018, taught by Sandrine Dudoit at UC Berkeley



## **Learning Resources for Bootstrap**

- Lecture notes of STAT 200:Introduction to Statistical Inference, at Stanford <a href="http://web.stanford.edu/class/stats200/Lecture19.pdf">http://web.stanford.edu/class/stats200/Lecture19.pdf</a>
- 2. Which Bootstrap when? (lecture notes of STATS 36-402, Spring 2013, at CMU)

  <a href="https://www.stat.cmu.edu/~cshalizi/uADA/13/lectures/which-bootstrap-when.pdf">https://www.stat.cmu.edu/~cshalizi/uADA/13/lectures/which-bootstrap-when.pdf</a>

