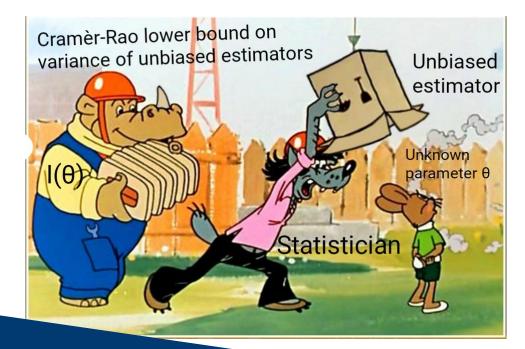
Stat 135 Lab 5

GSI: Yutong Wang Feb 21, 2020



To-do Today

- 1. Minimal sufficient statistic
- 2. Sufficiency
- 3. Fisher information and Cramer-Rao lower

bound

4. Quiz time (45 min)

Minimal Sufficient Statistic (Rice 8.10.47)

The Pareto distribution has been used in economics as a model for a density function with a slowly decaying tail:

$$f(x|x_0,\theta) = \theta x_0^{\theta} x^{-\theta-1}, \qquad x \geqslant x_0, \theta > 1$$

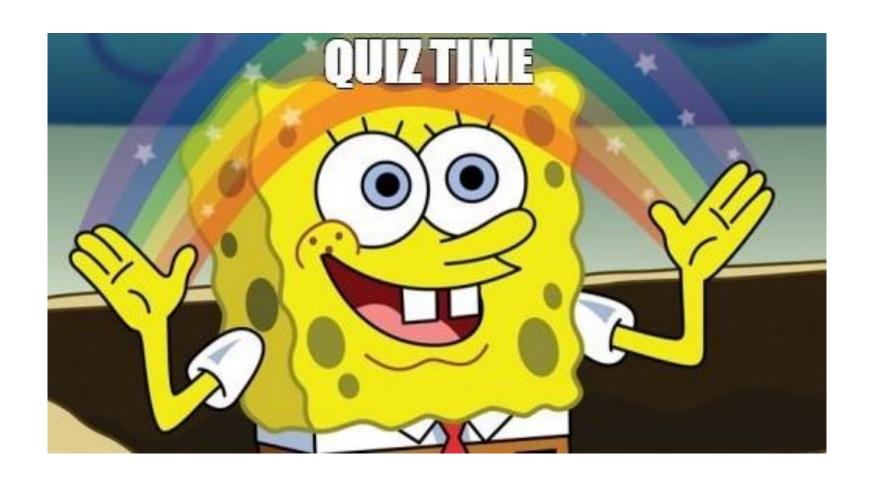
Assume that $x_0 > 0$ is given and that X_1, \ldots, X_n is an i.i.d. sample.

- (a) Find the MoM estimate of θ .
- (b) Find the MLE of θ .
- (c) Find the asymptotic variance of the MLE.
- (d) Find a sufficient statistic for θ .
- (e) Find a minimal sufficient statistic.

Sufficiency

Suppose you observe $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim}$ Bernoulli(p). Recall that if $0 \le p \le 1$, then $0 \le p(1-p) \le 1/4$.

- (a) What is the MLE of p?
- (b) Is $\sum_{i=1}^{n} X_i$ sufficient for p? Show that X_1 is not sufficient but X_1, \ldots, X_n (i.e., the sample itself) is sufficient.
- (c) Find the estimator with minimum variance among all unbiased estimators. Explain why your choice has this property.
- (d) Suppose you want to estimate $\theta = p(1-p)$. Find an unbiased estimator $\hat{\theta}$ of θ that depends only on \overline{X}_n .



FI and CR lower bound

Consider an i.i.d. sample Y_1, \ldots, Y_n with pdf $f(y) = \theta e^{-y\theta}$ for $\theta > 0$ and y > 0.

- (a) Derive the likelihood function. Where in your derivation are you using independence?
- (b) Use the factorisation theorem to find a sufficient statistic for θ . Show your work.
- (c) Find the MLE for θ .
- (d) Find the MLE for $Var(Y) = 1/\theta^2$. State which property of MLEs you are using.

