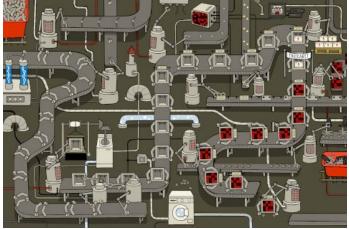
Stat 135 Lab 6

GSI: Yutong Wang Feb 28, 2020

To-do Today:

Notice: I made some schedule changes to make the lab sections more organized.

- In the first 60 min, I will review important concepts and theorems.
- In the second hour, you will be given 30 min to solve all the practice problems, and we will go over them together in the last 30 min.



To-do Today:

Topics:

- 1. Sufficiency, minimal sufficiency
- 1. Hypothesis testing, likelihood ratio test
- 2. Uniformly most powerful test
- 3. Generalized likelihood ratio test
- 4. p-value

Review: Sufficiency

- A statistic $T = T(X_1, ..., X_n)$ is a function of the data only. (no parameter θ involved!) Examples of a statistic: (1) $(X_1, X_2, ..., X_n)$ (2) X_3 (3) $(X_{(1)}, X_{(2)}, ..., X_{(n)})$ (4) $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$
- A statistic $T = T(X_1, ..., X_n)$ is **sufficient** for $\mathcal{P} = \{P_{\theta}, \forall \theta \in \Theta\}$ if $P_{\theta}(X_1, ..., X_n \mid T = t)$ does not depend on θ .
- (Factorization) T is sufficient for \mathcal{P} if and only if (iff) there exists functions g_{θ} , h such that $P_{\theta}(X^n) = g_{\theta}(T(X^n))h(X^n)$, where X^n denotes $(X_1, X_2, ..., X_n)$.
- If T is sufficient for θ , the maximum likelihood estimate is a function of T.

Review: Minimal Sufficiency

- Definition: T is minimal sufficient for P if
 (1) T is sufficient,
 (2) for any sufficient S = S(Xⁿ), there exists f with T = f(S)
- Criterion: T is minimal sufficient for \mathcal{P} iff $\frac{P_{\theta}(X^n)}{P_{\theta}(Y^n)}$ does not depend on $\theta \iff T(X^n) = T(Y^n)$

Review: Hypothesis Testing

- A hypothesis is a statement about the parameter. One hypothesis $H_0: \theta \in \Theta_0$ is singled out as the null hypothesis, and the other complementary one is $H_1: \theta \in \Theta_1$ as the alternative hypothesis.
- Rejecting H_0 when it is true is called a **type I error**.
- The probability of a type I error is called the significance level of the test and is usually denoted by α.
 α = P₀(d(X) = 1)
- Accepting the null hypothesis when it is false is called a type II error and its probability is usually denoted by β.
 β = P₁(d(X) = 0)
- The probability that the null hypothesis is rejected when it is false is called the **power** of the test, and equals $1 - \beta$. $1 - \beta = 1 - \mathbb{P}_1(d(X) = 0) = \mathbb{P}_1(d(X) = 1)$

Review: Likelihood Ratio Test

- A **test statistic** is a function of your data that leads you to a decision whether to reject or not reject the null hypothesis.
- For some fixed significance level α , the **likelihood ratio test** says: reject H_0 if $\Lambda < c$, where $\Lambda = \frac{P_0(X)}{P_1(X)}$ is the likelihood ratio, and c is some function of α , with $\alpha = P_0(d(X) = 1) = P_0(\Lambda < c)$.
- The **rejection region** is the set of values of the test statistic that leads to rejection of H_0 .

Review: Uniformly Most Powerful Test

- A simple hypothesis is one that fully specifies the sampling distribution. (Θ₀ or Θ₁ is a singleton.)
 If a hypothesis does not completely specify the probability distribution, the hypothesis is called a composite hypothesis.
- Neyman-Pearson Lemma: Suppose that H_0 and H_1 are simple hypotheses and that LRT rejects H_0 with significance level α , then any other level- α test has smaller power.
- If the null H_0 is simple and the alternative H_1 is composite, a test that is most powerful for every simple alternative in H_1 is said to be **uniformly most powerful**.

Review: Generalized likelihood ratio test

- The likelihood ratio test is optimal for testing a simple hypothesis versus a simple hypothesis. And **generalized LRT** is used when the hypotheses are not simple.
- Suppose $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1$, where $\Theta_0 \cap \Theta_1 = \emptyset, \Omega = \Theta_0 \cup \Theta_1$. Define

$$\Lambda = \frac{\max_{\theta \in \Theta_0} [\text{Lik}(\theta)]}{\max_{\theta \in \Omega} [\text{Lik}(\theta)]}$$

, where $\max_{\theta \in \Omega} [\text{Lik}(\theta)] = \text{Lik}(\hat{\theta}_{\text{ML}}).$

• GLRT: reject H_0 if $\Lambda < c$, where c is some function of α .

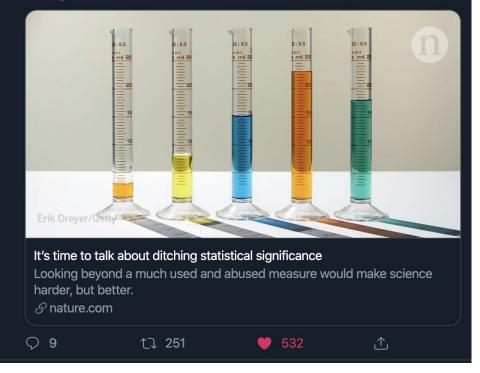
Preview/Review: p-value

• **p-value** is the probability of getting a test statistic as or more extreme as what you observed, given the null hypothsis being true.

Caveats about p-value!

Nature 🕑 @nature · Apr 2, 2019

Editorial: Using P values as the sole arbiter of what to accept as truth can mean that some analyses are biased, some false positives are overhyped and some genuine effects are overlooked.



What: to solve lab problems How long: 30-45 min Who: by yourself or a study group of 2-3 ppl Where: bCourses/pages/labs - Lab5 Q2, Lab 6 Please make good use of your time and ask your peers or me for any questions. I will get fast-paced on board!

Q1: Sufficiency

Suppose you observe $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$. Recall that if $0 \leq p \leq 1$, then $0 \leq p(1-p) \leq 1/4$.

- (a) What is the MLE of p?
- (b) Is $\sum_{i=1}^{n} X_i$ sufficient for p? Show that X_1 is not sufficient but X_1, \ldots, X_n (i.e., the sample itself) is sufficient.
- (c) Find the estimator with minimum variance among all unbiased estimators. Explain why your choice has this property.
- (d) Suppose you want to estimate $\theta = p(1-p)$. Find an unbiased estimator $\hat{\theta}$ of θ that depends only on \overline{X}_n .

Q2: Likelihood Ratio Test

Let
$$X = (X_1, \dots, X_n)$$
 be i.i.d $N(\mu, \sigma^2)$ with known σ^2 .
 $H_0: \mu = \mu_0$
 $H_1: \mu = \mu_1$
 $\alpha = 0.01$

(a). What is the rejection region for this test? (b). Is $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ a uniformly most powerful test? (c). Compute the power of the tset for $\mu_0 < \mu_1$ case.

Q3: Likelihood Ratio Test (Rice 9.11.4 a, b)

Let X have one of the following distributions:

X	H_0	H_1
x_1	0.2	0.1
x_2	0.3	0.4
x_3	0.3	0.1
x_4	0.2	0.4

(a) Compare the likelihood ratio Λ , for each possible value X and order the x_i according to Λ . (b) What is the likelihood ratio test of H_0 versus H_A at level $\alpha = 0.2$? What is the test at level $\alpha = 0.5$?

Q4: GLRT (Rice 9.11.24 a)

Let X be a binomial random variable with n trials and probability p of success. What is the generalized likelihood ratio for testing $H_0: p = 0.5$ versus $H_A: p = 0.5$?

Q5: Power

Let X be a *single* observation from the probability density function $f(x) = \theta x^{\theta-1}, 0 < x < 1$.

(a) Find the most powerful test using significance level

 $\alpha = 0.05$ for testing the hypothesis $H_0: \theta = 1$ and $H_1: \theta = 2$ (sketch the densities $f(x \mid H_0)$ and $f(x \mid H_1)$ for the two hypothesis).

(b) What is the power of the test?

(c) What is the *p*-value of X = 0.8?

(d) For fixed $\alpha = 0.05$, is the test uniformly most powerful against the alternative hypothesis $H_1: \theta > 1$?

