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@i George Takei @
@GeorgeTakei

Live longer and prosper.

HOW TO PROPERLY
GREET SOMEONE DURING
THE CORONAVIRUS OUTBREAK

For students who are in my sections:

| will post lab slides including more detailed explanation starting from this week.
So those of you who feel unwell will have access to the lab material.

Also, if you intended but felt unwell to go to my office hours, you are always
welcome to post your questions in piazza. Please specifically write [Yutong's
OH] in your title or post private questions if you'd prefer, and I'll try to
accommodate and answer your questions in Piazza.

Please take care of yourselves, and let us know if you are affected in any way.
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Take 90 seconds and watch this short video:
WHO: How to handwash? With soap and water

This is something we can all do! &



https://www.youtube.com/watch?v=3PmVJQUCm4E

e Estimation
o Method of moments (MoM) 8.4
o Maximum likelihood estimator (MLE) 8.5
m Large sample theory 8.5.2
m Confidence interval 8.5.3
o Difference between the estimators
m Efficiency, CRLB 8.7
m Sufficiency, Rao-Blackwell theorem 8.8
o Approximation using Delta method 4.6

e Hypothesis testing
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- The k-th population moment of a probability law is a
function of parameters, defined as . = E(X*)
- The k-th sample moment is the average of k-th powers
of the sample, defined as 4, = 1 S x!
- To calculate MoM: "is
1. Calculate the first k population moments in terms of the
parameters
2. Invert the expressions in step 1 and express the
parameters as a function of the population moments
3. Plug in the sample moments in place of the population
oments to obtain MoM estimates of the parameters
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o Maximum likelihood estimator (MLE) 8.5

m Large sample theory 8.5.2

m Confidence interval 8.5.3
o Difference between the estimators

m Efficiency, CRLB 8.7

m Sufficiency, Rao-Blackwell theorem 8.8
o Approximation using Delta method 4.6

e Hypothesis testing
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Suppose R.V.s X1, Xy, ..., X,, have a joint density f(Xq,..., X, | 0).
Given observed values X| = x1. Xo = x9, ..., X,, = 7,, which are fixed numbers.
1. Write down the likelihood function of parameter 6.
The likelihood function is L(0) = f(x1, 22, ...,y | 0)
If X; are independent and identically distributed (i.i.d.), we have L(6) = II""_, f(x; | 0)

2. Optimize the likelihood function over 6.
argmaxycg (L(6; X)) represents the parameter 6 that maximizes the likelihood of observing our data.
We optimize by (a) setting the derivative to be zero; (b) taking the endpoint or other approaches.

Note: it is always easier to differentiate w.r.t. @ if we take logarithm of the function first.

Adam’s note: Don’t compute the log right away - first look at the likelihood itself
and see if it's easy to maximize directly.
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e Under appropriate smoothness conditions on f , the MLE from an i.i.d. sample is consistent.

e As the sample size n goes to infinity, The large sample distribution of MLE is approximately
normal with mean 6y and variance M%.
Thus, MLE is asymptotically unbiased, and asymptotically normal, with asymptotic variance

equal to "1(;90)’ where I(0) is the Fisher information.
e Fisher information:

I(0) =E 8l  f(X | 6) 2——E{821  f(X | 6)
— @og = WOE—’;
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m Confidence interval 8.5.3
o Difference between the estimators

m Efficiency, CRLB 8.7

m Sufficiency, Rao-Blackwell theorem 8.8
o Approximation using Delta method 4.6

e Hypothesis testing
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Exact methods

Approximation based on large sample theory of MLE
Bootstrap confidence intervals (Adam’s lecture notes in
lecture 5, 10)

W=

¢ ¢ What is the difference between parametric and
nonparametric bootstrap?
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Adam'’s lecture notes #10: resample with replacement

e Take a sample X4, ..., X,, of size n one time from your population. Calculate 6.

Resample from your sample B = 1000 times with replacement, size n, and comp-
ute the sample estimate of 6: 07,05, ...,0%.

e Subtract 6 from each 07, so we get 0] — 0, 05 — . -— 05 — 0.

Find 2.5th and 97.5th largest value called a, b, respectively.

~ ~

e Given a,b, the 95% CI of 0 is [# — b,0 — a].

Note: [a,b] is an approximation of the 2.5th and 97.5th percentile of § — 6.

Pla<f—0<b)=9% «— PO—-b<0<0—a)=9%
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Adam'’s lecture notes #10: resample from the model
parametrized by the MoM or MLE.

e Get a sample, make a histogram and guess a model that fits the histogram.

e Estimate parameter using MoM or MLE. Overlay the histogram from step 1 with a frequency plot for
the model distribution with the estimated parameter.

e Use model with estimated parameter to generate sampling distribution and find its SD.
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Non-parametric bootstrap:

find lambda np <~ function(){
resample <- my data %>% sample(replace=TRUE)
mean(resample)

lambda vec <- replicate(B, find lambda np())
se.lambda=sd(lambda vec)

Parametric bootstrap:

find_lambda <- function(sample_size){
data <- rpois(sample_size, lambda=lambda_ hat)
mean(data)

}

lambda vector <- replicate(B, find lambda(sample_size))
sd(lambda_vector)
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Bootstrap confidence interval:

alpha=.05
CI.lambda= 2*lambda hat -quantile(lambda vec,c(l-alpha/2,alpha/2))
as.vector(CI.lambda)

Distributions in R:

Description

Density, distribution function, quantile function and random generation for the normal
distribution with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, log = FALSE)

pnorm(q, lower.tail = TRUE, log.p FALSE)
gnorm(p, lower.tail = TRUE, log.p FALSE)
rnorm(n,
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o Difference between the estimators

m Efficiency, CRLB 8.7

m Sufficiency, Rao-Blackwell theorem 8.8
o Approximation using Delta method 4.6

e Hypothesis testing
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Var(é)

e Given two estimates, # and 6, of a parameter 6, the efficiency of 6 relative to 6 is defined to be Var(d)"

o Let Xq,..., X, beiid. with density function f(x | #). Let T = t(Xq,..., X,,) be an unbiased estimate
of . Then, under smoothness assumptions on f(x | 6),

1
a >
Var(T) 2 77758
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m Sufficiency, Rao-Blackwell theorem 8.8
o Approximation using Delta method 4.6

e Hypothesis testing
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A statistic T = T'(X1, ..., X,,) is a function of the data only. (no parameter € involved!)

A statistic T = T'(Xy, ..., X,,) is sufficient for P = {FPy,V0 € O} if Pyp(X1,...,X,, | T = t) does not
depend on 6.

(Factorization) T is sufficient for P if and only if (iff) there exists functions gy, h such that Py(X"™) =
go(T(X™))h(X™),where X" denotes (X1, X2, ..., Xn).

If T is sufficient for #, the maximum likelihood estimate is a function of 7.

Definition: T is minimal sufficient for P if (1) T is sufficient, (2) for any sufficient S = S(X"), there
exists f with T'= f(9)

Criterion: T is minimal sufficient for P iff i,)‘;'—ifl)) does not depend on 0 <= T(X")=T(Y")
Rao-Blackwell Theorem: Let 6 be an estimator of 6, with E (éQ) < 0o. Suppose that T is sufficient for
0, and let # = E(6 | T'). Then, for all , MSE[f] < MSE[6].
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Let X4,...,X,, be an ii.d sample from a distribution with pdf:
fx(z|s) = s(1 —z)° ", r € (0, 1]

(a) Find the MLE of s.

(b) F md a sufﬁcnent statistic of s.

(c) Is [I75' (1 — z;) sufficient?

(d) Is {Zlog(l — x;), min;ey ., X;} sufficient?

(e) Is J]._, @i sufficient?

(f) Is the set {kzy}j_, sufficient?

(

g) Which of the statistics found in part b, ¢, d, e, f are minimum sufficient?
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e (a) Don’t compute the log right away - first look at the likelihood itself and
see if it's easy to maximize directly.

If not, we will compute Lik -> logLik -> set derivative to be 0

e (b) Factorization theorem
e (c-f) To check if some statistic T is sufficient, we can
o Check if T is a function of another sufficient statistic.
o Apply the corollary about MLE: if T is sufficient for s, MLE is a function
of T. i.e., If MLE is not a function of T, T is not sufficient.
o Remember the whole sample is always sufficient.
o If none of the above works, can you construct any counterexample to
show it is not sufficient?
e (g) Use the criterion of MSS (compute likelihood ratio) to find MSS.
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e Estimation
o Method of moments (MoM) 8.4
o Maximum likelihood estimator (MLE) 8.5
m Large sample theory 8.5.2
m Confidence interval 8.5.3
o Difference between the estimators
m Efficiency, CRLB 8.7
m Sufficiency, Rao-Blackwell theorem 8.8
o Approximation using Delta method 4.6

e Hypothesis testing
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The Central Question is: What is the mean and variance of
Y = g(X) for some fixed function g?

® Note that E(g(X)) is NOT equal to g(E(X))!

E(Y)~ g(ux) + 5038" (ix)

oy ~ oy[g (ux)]’
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48. Consider the following method of estimating A for a Poisson distribution.
Observe that

p=PX =0 ="

Letting ¥ denote the number of zeros from an i.i.d. sample of size n, A might be

estimated by
- Y
X =i — log(—)
n

Use the method of propagation of error to obtain approximate expressions for
the variance and the bias of this estimate. Compare the variance of this estimate
to the variance of the mle, computing relative efficiencies for various values of
A. Note that Y ~ bin(n, py).
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e \What to estimate: A for a Poisson distribution
e Estimation methods:

o MLE
O j= _log(Z> - which is some nonlinear function of Y.

n

We have two methods in parallel for estimation. The first
one (MLE) is w.r.t. X, and the second one is w.r.t. Y.

We know that v ~ Binom(n,e=*), then in order to calculate the

bias and variance of i , are you going to calculate the
Integration or apply Delta method?
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e Hypothesis testing

o Terminology
LRT & Neyman Pearson lemma
Uniformly most powerful test
Generalized LRT
Duality of Cl and hypothesis testing

O O O O
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A hypothesis is a statement about the parameter. One hypothesis Hy : 6 € O is singled out as the
null hypothesis, and the other complementary one is H; : 0 € ©; as the alternative hypothesis.

e Rejecting Hy when it is true is called a type I error.

e The probability of a type I error is called the significance level of the test and is usually denoted by

a=Pyd(X)=1)

e Accepting the null hypothesis when it is false is called a type II error and its probability is usually
denoted by =Py (d(X) = 0)

e The probability that the null hypothesis is rejected when it is false is called the power of the test, and
equals 1 — 8=1-P;(d(X) =0) =P;(d(X) =1)

e A test statistic is a function of your data that leads you to a decision whether to reject or not reject
the null hypothesis.

Po(X)
P (X)

e For some fixed significance level «, the likelihood ratio test says: reject Hp if A < ¢, where A =
is the likelihood ratio, and ¢ is some function of «, with o = Py(d(X) = 1) = Py(A < ¢).

e The rejection region is the set of values of the test statistic that leads to rejection of Hy.

e Neyman-Pearson Lemma: Suppose that Hy and H; are simple hypotheses and that LRT rejects
Hj with significance level «, then any other level-a test has smaller power.
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A simple hypothesis is one that fully specifies the sampling distribution. (©g or ©; is a singleton.)
If a hypothesis does not completely specify the probability distribution, the hypothesis is called a
composite hypothesis.

e If the null Hj is simple and the alternative H; is composite, a test that is most powerful for every
simple alternative in H; is said to be uniformly most powerful.

e The likelihood ratio test is optimal for testing a simple hypothesis versus a simple hypothesis. And
generalized LRT is used when the hypotheses are not simple.

e Suppose Hy : 0 € Og, Hy : 0 € ©1, where O N O =0,Q = Oy U O;. Define

maxgeo, [Lik(6)]

A=
maxgeq [Lik(60)]

, where maxgeq[Lik(0)] = Lik(umy).
e GLRT: reject Hy if A < ¢, where ¢ is some function of a.

e p-value is the probability of getting a test statistic as or more extreme as what you observed, given
the null hypothsis being true.
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e Tests for the population mean

o Large sample size: normal approximation, no matter what the
population distribution is

o Small sample size: What is the population distribution?
m If it is normal distribution, is the variance known?
m Whatif it is dichotomous?
m If neither, what facts do we know about the
population distribution?
m Otherwise, we at least still have Bootstrap!!

- -, -,
S W S .
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Problem 6. (25 pts) Suppose that Yi,..., Y,, are independent and identically distributed random variables

with each Y; having density function
9

, 7]
f(y|0) = —exp(—0/y),
y
where y > 0 and # > 0. It is know that F(Y;) = 0 and E( ’L,) = f; foreach i1 =1,..., .

a (3 pts) Determine #y;0ns, the method of moments estimator of 6.

b (3 pts) Compute the likelihood function L(#) for this random sample.

2n

n |
z: 1 Y;

c (3 pts) Show that the maximum likelihood estimator of € is Opy/Lp =

d (3 pts) Find the Fisher information /(#) in a single observation from this density.

e (3 pts) Using the standard approximation for the distribution of a maximum likelihood estimator based
on the Fisher information, construct an approximate 90% confidence interval for 6.
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f (4 pts) Verify that the generalized likelihood ratio test for the test of the hypothesis Hy : € = 0y against
H 4 : 6 # 6y has rejection region of the form

L n

lz:l% exrp —()(,Z% <

i=1 !
for some constant C'.
To answer (g) and (h) below, suppose that an observation of size n=8 produces

8

Z)i = 10.

i=1 !

g (3 pts) Based on your confidence interval constructed in (e) and on the above data, can you reject the
hypothesis Hy : # = 1 in favour of H4 : 6 # 1 at the significance level a = 0.107.

h (3 pts) Based on your generalized likelihood ratio test constructed in (f) and on the above data, can you
reject the hypothesis Hy : # = 1 in favour of H, : 8 # 1 at the significance level a = 0.107.
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e (e)Approximated Cl is
)

7éMLE T 2 /2

[éMLE — Ra/2"

i} 1
\/nI(éMLE) \/nI(éMLE)

e (g) Remember the duality between Cl and
hypothesis tests. The null hypothesis is
accepted if 1 lies in the confidence region.




Let X be a single observation from the probability density
function f(z) =0z°"1,0 <z < 1.
(a) Find the most powerful test using significance level

a = 0.05 for testing the hypothesis Hy : # = 1 and
Hy : 0 = 2 (sketch the densities f(x | Hy) and f(x | Hy)
for the two hypothesis).

(b) What is the power of the test?

(c) What is the p-value of X = 0.87
(d) For fixed a = 0.05, is the test uniformly most powerful
against the alternative hypothesis H; : 0 > 17
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e (d) To find the UMP test, we should consider
a simple alternative hypothesis 6 =146,,6, > 1




